MQ07 - Impact de l'écrouissage sur la vitesse d'oxydation

Jean-Baptiste Vassort Fabiola Vene Quentin Gras Hanying YANG

Plan

Manipulations expérimentales

Protocole expérimentale Essai de traction et Écrouissage

Observations Expérimentales

Analyse thermogravimétrique (ATG)
Observation au Microscope électronique à balayage (MEB)

Comparaison littérature

Conclusion

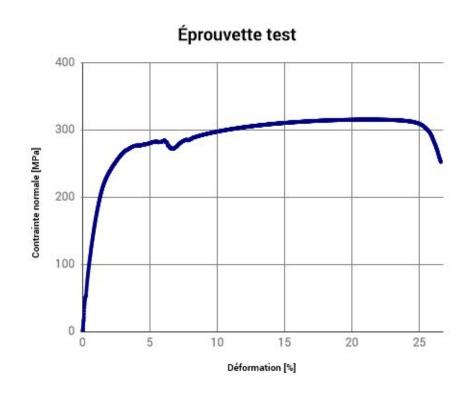
Manipulation expérimentales: Protocole expérimental

Etude Acier XC10

Découpe des échantillons de traction et polissage miroir

Essai de traction pour définir les caractéristiques matériaux

Écrouissage (par traction) des échantillons et découpe des échantillons pour l'ATG


ATG (1h à 500°C sous dioxygène synthétique)

Enrobage et Observations MEB

Manipulation expérimentales: Essai de traction et Écrouissage

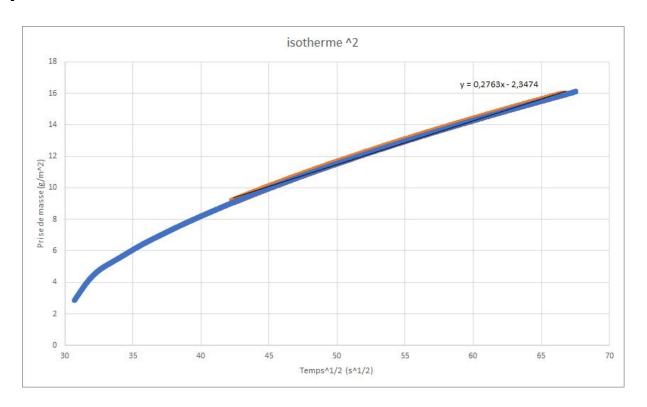
-Identification du domaine plastique et des déformations plastiques résiduelles cibles: 5%, 10%,15%

-Pilotage en force: une fois la force correspondante atteinte, remise progressive à 0 de la force.

Manipulation expérimentales: Essai de traction et Écrouissage

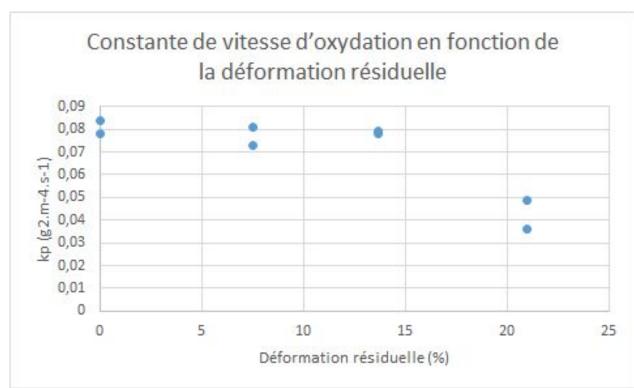
- -Problème lors de la relaxation de la force pour tous les échantillons: traction ou compression non voulus.
- -Déformations résiduelles finalement obtenues :

7.5% / 13.7% / 21%

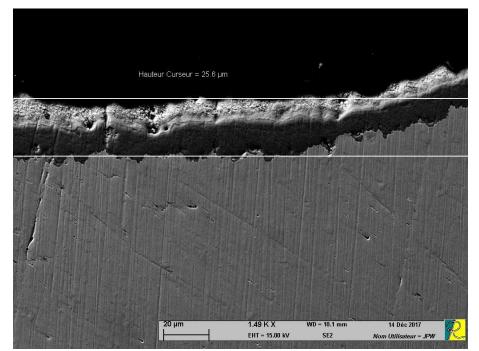


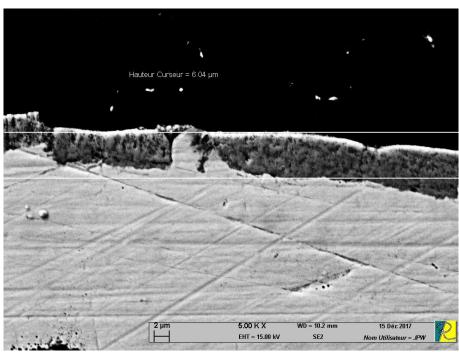
Observations expérimentales: ATG

Loi parabolique pour tous les échantillons traités en ATG du type:


$$(\frac{\Delta m}{S})^2 = k_p \times t$$

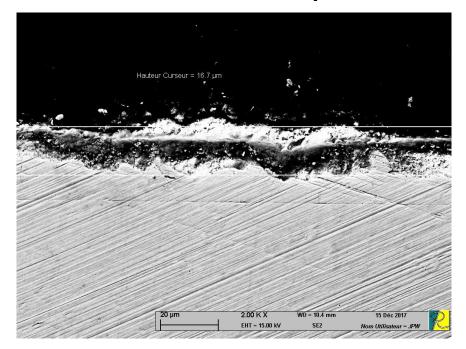
Partie non linéaire en début de courbe=> régime transitoire

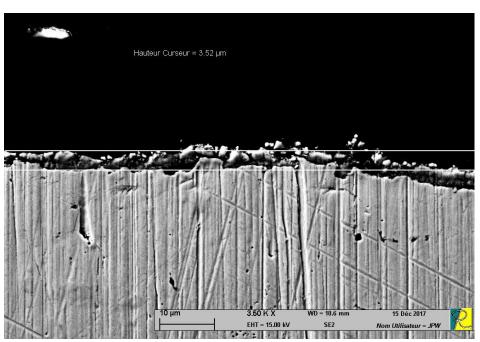



Observations expérimentales: ATG

- Conservation de la constante de vitesse pour des déformations <15%
- -Diminution de la constante de vitesse pour une déformation de 21%
- => Hypothèse: Couche d'oxyde plus mince pour les échantillons 21_1 et 21_2

Observations expérimentales: MEB

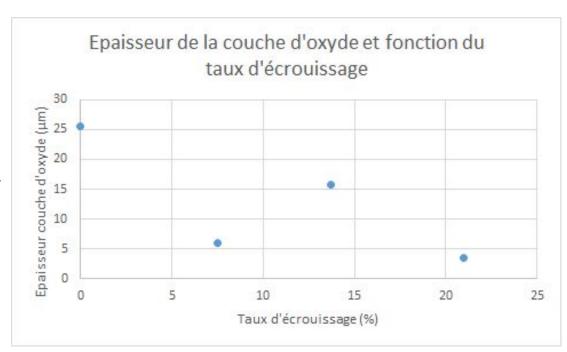




7.5_1, épaisseur oxyde= 6µm

T1, épaisseur oxyde= 25μm

Observations expérimentales: MEB



13.7_1, épaisseur oxyde= 16μm

21_1, épaisseur oxyde= 4µm

Observations expérimentales: MEB

- -Conformité de l'hypothèse formulée selon les résultats ATG
- -Epaisseur suspecte pour l'échantillon 7.5_1, perte d'oxyde lors du polissage
- -Tendance à la diminution de l'épaisseur de la couche d'oxyde avec augmentation de la déformation
- -Deux oxydes ou chargement électronique ?

Comparaison littérature

Effet mécanique de l'écrouissage

```
Limite d'élasticité (Re) † Ténacité

Dureté (H) † Ductilité ↓

Rigidité †
```

Effet sur microstructure

L'augmentation des défauts

Les grains s'allongent

Les dislocations concentrent autour des joints de grain ou précipités

Les contraintes résiduelles

L'apparition des fissures

L'apparition de lacune

Comparaison littérature

- Effet sur l'oxydation
 - Présence de lacune
 - Présence de microfissure
 - Contraintes résiduelles
 - Taille des grains
- Explications potentielles des différences observées
 - Densité de dislocation non uniforme
 - Recuit partiel des échantillons
 - Etude sur des aciers différents

Comparaison littérature

- Des conclusions pour des cas différents
- Augmentation de la résistance à la corrosion sur acier inoxydable en milieu gazeux
- Diminution de la résistance à la corrosion en milieu aqueux
- Absence d'étude proche de notre cas
- Acier inoxydables ou avec éléments d'alliage (Nb)
- Etude pour bassins réacteurs ou fours
- Rapprochement potentiel
- Diminution de la vitesse de corrosion pour faibles déformations

Conclusion

- Pas de résultats certains
- Observations contradictoires
- Une première approche des difficultés d'obtenir des résultats exploitables en recherche
- Utilisation de méthodes ayant un impact plus faible ou demandant moins d'interventions humaines (polissage)

Remerciements

- Loic Escher pour son aide lors des écrouissages

- Solène Houde pour sa disponibilité et son aide tout au long de ce projet

- Le jury de soutenance pour son attention